Independent Regulation of Reovirus Membrane Penetration and Apoptosis by the μ1 ϕ Domain
نویسندگان
چکیده
Apoptosis plays an important role in the pathogenesis of reovirus encephalitis. Reovirus outer-capsid protein mu1, which functions to penetrate host cell membranes during viral entry, is the primary regulator of apoptosis following reovirus infection. Ectopic expression of full-length and truncated forms of mu1 indicates that the mu1 phi domain is sufficient to elicit a cell death response. To evaluate the contribution of the mu1 phi domain to the induction of apoptosis following reovirus infection, phi mutant viruses were generated by reverse genetics and analyzed for the capacity to penetrate cell membranes and elicit apoptosis. We found that mutations in phi diminish reovirus membrane penetration efficiency by preventing conformational changes that lead to generation of key reovirus entry intermediates. Independent of effects on membrane penetration, amino acid substitutions in phi affect the apoptotic potential of reovirus, suggesting that phi initiates apoptosis subsequent to cytosolic delivery. In comparison to wild-type virus, apoptosis-defective phi mutant viruses display diminished neurovirulence following intracranial inoculation of newborn mice. These results indicate that the phi domain of mu1 plays an important regulatory role in reovirus-induced apoptosis and disease.
منابع مشابه
A proapoptotic peptide derived from reovirus outer capsid protein {micro}1 has membrane-destabilizing activity.
The reovirus outer capsid protein μ1 is responsible for cell membrane penetration during virus entry and contains determinants necessary for virus-induced apoptosis. Residues 582 to 611 of μ1 are necessary and sufficient for reovirus-induced apoptosis, and residues 594 and 595 independently regulate the efficiency of viral entry and reovirus-induced cell apoptosis, respectively. Two of three α-...
متن کاملMulti-Organ Lesions in Suckling Mice Infected with SARS-Associated Mammalian Reovirus Linked with Apoptosis Induced by Viral Proteins μ1 and σ1
We reported the isolation and characterization of a novel mammalian reassortant reovirus BYD1 that may have played an accomplice role with SARS-coronavirus during the 2003 SARS pandemic. The pathogenic mechanism of this novel reovirus is unknown. Reovirus pathogenicity has been associated with virus-induced apoptosis in cultured cells and in vivo. The reovirus outer capsid protein μ1 is recogni...
متن کاملReovirus apoptosis and virulence are regulated by host cell membrane penetration efficiency.
Apoptosis plays an important role in the pathogenesis of reovirus encephalitis and myocarditis in infected animals. Differences in apoptosis efficiency displayed by reovirus strains are linked to the viral mu1-encoding M2 gene segment. Studies using pharmacologic inhibitors of reovirus replication demonstrate that apoptosis induction by reovirus requires viral disassembly in cellular endosomes ...
متن کاملReovirus infection or ectopic expression of outer capsid protein micro1 induces apoptosis independently of the cellular proapoptotic proteins Bax and Bak.
Mammalian orthoreoviruses induce apoptosis in vivo and in vitro; however, the specific mechanism by which apoptosis is induced is not fully understood. Recent studies have indicated that the reovirus outer capsid protein μ1 is the primary determinant of reovirus-induced apoptosis. Ectopically expressed μ1 induces apoptosis and localizes to intracellular membranes. Here we report that ectopic ex...
متن کاملJAM-A-independent, antibody-mediated uptake of reovirus into cells leads to apoptosis.
Apoptosis plays a major role in the cytopathic effect induced by reovirus following infection of cultured cells and newborn mice. Strain-specific differences in the capacity of reovirus to induce apoptosis segregate with the S1 and M2 gene segments, which encode attachment protein sigma1 and membrane penetration protein mu1, respectively. Virus strains that bind to both junctional adhesion mole...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Pathogens
دوره 4 شماره
صفحات -
تاریخ انتشار 2008